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Abstract

In the past decade, generative artificial intelligence has made
significant progress, especially in image generation. Realis-
tic photos can be created in seconds with straightforward text
prompts. However, when it comes to the human body gener-
ation, precise controllability of desired poses is still an open
problem. This could be even more tricky when multi-view
consistency is considered. To this end, we propose to tackle
such 2D problems with the help of 3D priors. Specifically,
Stable Diffusion is applied to generate high-quality images,
while the Low-Rank Adaptation (LoRA) takes charge of the
character style. As an essential connection between 2D and
3D, we introduce SMPL as a novel prior to explicitly con-
trol the generated poses. The experimental results show that
the proposed method overperforms the state-of-the-arts, ef-
fectively generating realistic human photos with sophisticated
poses.

Introduction
With the rapid development of AI image generation, all
kinds of images can be generated from text prompts or vi-
sual cues. Among them, generating human portraits is one
of the most import but challenging topic. The goal is to gen-
erate digital human with real-life appearance, expressions
and poses. In the early stage of human image generation, the
Generative Adversarial Network (GAN) (Goodfellow et al.
2014) is the mainstream of the generation model (Karras
et al. 2020; Liao et al. 2022), and the generator structure
is used to effectively generate images, but it is easy to cause
model collapse during the training process. Most recently,
the diffusion model has become more and more popular as
a successful generation method (Saharia et al. 2022; Rom-
bach et al. 2022; Ramesh et al. 2022; Nichol et al. 2021).
This method uses the Markov chain (Dhariwal and Nichol
2021) learning mechanism to model the image through the
Gaussian distribution (Do 2008) to achieve image denois-
ing. Similarly, the breakthrough in image generation mod-
els is mainly driven by text-guided diffusion models. These
diffusion-based text-to-image generation models (Yu et al.
2022; Chang et al. 2023; Ramesh et al. 2022) have made
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impressive improvements in image quality and have outper-
formed GAN (Kang et al. 2023; Dhariwal and Nichol 2021)
in performance.

In particular, for human pose control, GAN is usually
used, but when the person undergoes large pose changes, it
is impossible to capture the reasonable texture mapping be-
tween the original image and the target image (Zhang et al.
2022). Therefore, this paper adopts Stable Diffusion (Rom-
bach et al. 2022) as the basic model, and uses LoRA (Hu
et al. 2021) to control the character style, and trains Con-
troNet (Zhang, Rao, and Agrawala 2023) with the human
image datasets. The Stable Diffusion model can effectively
understand and extract text semantics to generate images
of related concepts. In text-to-image generation, Control-
Net makes the generated image of the diffusion model more
controllable. The trained ControlNet can further adjust the
diffusion model according to the image information such
as canny edge map, depth map and openpose (Cao et al.
2017), and control the human body posture, edge feature,
front and back position relationship of the generated image.
However, when controlling the posture of the human body
only through openpose, the capture of human details and
posture is not sufficient. Therefore, we introduce the SMPL
(Loper et al. 2023) as a 3D prior to explicitly control the
human pose, thereby more effectively obtaining the human
pose and appearance representation.

Preliminaries
Stable Diffusion. Stable Diffusion (Rombach et al. 2022)
is a text-controlled image generation model based on diffu-
sion structure, which uses latent space to significantly reduce
the computational resources required for high-resolution
training and reasoning. Stable Diffusion is mainly composed
of three parts: 1) Variational autoencoder (VAE) (Kingma
and Welling 2013), which includes an encoder and a de-
coder. The encoder effectively preserves the deep image fea-
tures while converting the image into a low-dimensional
latent space representation of UNet, and then the decoder
creates the image based on the representation of the latent
space. 2) UNet is an encoder and decoder based on residual
module. The encoder realizes image compression, and the
decoder decodes low-resolution images into high-resolution
images. 3) Text Encoder encodes the input text as token em-
beddings, converts the input text into the meaning that UNet



can comprehend, and then generates an image that conforms
to the text description. The Stable Diffusion model has also
been extended to text-based image operations and supports
local and global editing as well as personalized operations.
In order to facilitate model loading and image generation,
this paper uses Stable Diffusion as the basis of the current
image generation framework (Figure 1).

LoRA. LoRA (Hu et al. 2021) is mainly used to solve the
problem of fine-tuning large models. Previously, the adjust-
ment of Stable Diffusion is slow and challenging. Consid-
ering that the calculation of the gradient does not require
the model weight, the LoRA introduces a trainable layer in
each Transformer block, which greatly reduces the number
of training parameters. The LoRA fine-tuning is more effi-
cient and less computationally intensive, while maintaining
the same quality level as the full model fine-tuning.

ControlNet. ControlNet (Zhang, Rao, and Agrawala
2023) is largely dependent on UNet and belongs to the
model of replication-diffusion UNet. The model uses con-
volutional layers to connect new conditional inputs and the
output of each layer as an encoder to control the image struc-
ture generated. The ControlNet model controls the picture
by adding more conditions to the Stable Diffusion model, so
as to accurately adjust the final generated content, and it is
easier to adjust the strong randomness generation result of
the diffusion model.

SMPL. SMPL (Loper et al. 2023) is a parameterized hu-
man body model, which is a method of human body mod-
eling by learning a large number of different human body
databases. It can realize the modeling of human bodies with
different postures by changing the input of parameters. The
model has two input parameters: body shape parameter β
and pose parameter θ. The body shape parameter β is a 10-
dimensional vector, which describes the body shape charac-
teristics of the human model. The post parameter θ is a 75-
dimensional vector, which is used to describe the changes of
human joints. By specifying the body shape parameter β and
the pose parameter θ, and acting on the average template to
deform the body shape and movement, the specified human
body model is reconstructed. The formula is expressed as:
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In the formula: W is a mixed skin linear equation. J is a
function that corresponds the body shape parameter β to the
bone joint point. BP is the function of mapping the attitude
parameter θ to the corresponding point of the model. BS is
a function of β mapping to the corresponding point of the
model. w is the mixed weight of each joint.

In this study, Human Bodies in the Wild (HBW) (Choutas
et al. 2022) dataset and 3D Poses in the Wild (3DPW)
(Von Marcard et al. 2018) dataset are used for training
dataset. Only the full body image data of participants in the
laboratory white background are extracted for HBW dataset.
At the same time, only single video sequences in different
scenes are selected from 3DPW. As shown in Figure 1, we
train the LoRA on the HBW dataset, including the training

Figure 1: The overall framework. Character style: The
background-free HBW data completes the training of LoRA
and realizes the adjustment of character style. Face inpaint:
The LoRA trained by the background-free HBW face data
accurately regulates the human face. 3D Prior ControlNet:
The pose image obtained by 3D prior (SMPL) completes
the training of ControlNet and realizes the control of human
pose. 3D Prior: The pose control image is obtained from 3D
prior (SMPL). Depth: The depth image obtained from the
pose control image.

of the peoples and the training of the faces. Through the
trained LoRA, the optimization of the Stable Diffusion large
model is realized, and then the ControlNet model conditions
are applied to adjust the shape of the peoples. Among them,
the ControlNet model is trained by obtaining pose control
images corresponding to 3D Prior (SMPL) from the 3DPW
dataset.

Experiments
LoRA Training. We select different participants from
the HBW dataset to train LoRA. For each set of data,
u2net human seg (Qin et al. 2020) is first used to remove
the background of the person, preventing LoRA from learn-
ing irrelevant background information. Then, the BLIP (Li
et al. 2022) algorithm is used to extract prompt for each RGB
photo. In order to make LoRA learn more detailed cloth-
ing and perspective features, the description words of cloth-
ing and perspective are manually refined on the basis of the
prompt words generated by BLIP. The base model of LoRA
training is realisticVisionV51 v51VAE, which is trained for
20 epochs.

In the field of human face generation, the face is an es-
sential factor in determining the quality of the generated
picture. Therefore, to improve the realism and accuracy of
generated human faces, we have adopted a series of tech-
niques to recompose the faces after generation. Specifically,
the YOLOv8 (Lou et al. 2023) algorithm is used for face de-



tection, and the face LoRA is trained using the domesticated
face data. The Faceparsing (Lee, Bhattarai, and Kim 2021)
algorithm is also used to segment the face in the iamge, and
the face data is separated from the image, so as to process
the face more accurately. In addition, in order to maintain
the consistency of the face and the full body, the prompt of
the face is adjusted accordingly. With these techniques, we
have successfully improved the quality of the face in gener-
ated human images, leading to further improvement in the
overall generated effect.

ControlNet Training. In the training process of Control-
Net, in order to ensure the accuracy and stability of model
training, the u2net human seg segmentation algorithm is
also used to separate the background and human, which ef-
fectively eliminates the interference of the background for
model training. Then, the BLIP algorithm is used to extract
prompt. Importantly, the corresponding 3D prior is obtained
by removing the background image, and then the pose con-
trol image obtained by the 3D prior is used as a new con-
trol condition. Finally, the obtained prompt, and the removal
of background images and pose control images are used for
fine-tuning of ControlNet. In this way, the training effect of
ControlNet is effectively improved, so as to achieve more
accurate and reliable human pose estimation.

Figure 2: Qualitative comparison of text-to-image genera-
tion.

In this paper, the trained LoRA is used to optimize the

Stable Diffusion large model, and the ControlNet model is
used to adjust the human body pose, and then the human im-
ages of different postures are generated. Further, this study
conducted experiments on the text-to-image and image-to-
image. Through the comparison of the results generated by
different generation methods, the superiority of this study is
further explored. It is worth mentioning that in the experi-
ment of image-to-image, not only the generation of single
view is considered, but also the generation of multi-view
is considered, which provides more comprehensive exper-
imental results.

Results

Figure 3: Qualitative comparison of image-to-image gener-
ation.

Text-to-Image. Firstly, the data of the 4th and 13th par-
ticipants in HBW are selected for comparative experiments.
By adjusting the parameters corresponding to the 3D prior,
a new pose is obtained as the control condition of hu-
man pose. Then, the corresponding depth image and open-
pose iamge are obtained from the pose control image. Fi-
nally, under the same prompt, our results are qualitatively
compared with depth, openpose and openpose+depth, re-
spectively. The qualitative results are shown in Figure 2.
Compared with the above comparison methods, our method
has a significant improvement in human pose and appear-
ance. Specifically, it surpasses depth, openpose and open-



pose+depth in dress, and maintains consistency with the
original image. At the same time, it is also superior to other
comparison methods in hand generation details. In particu-
lar, in terms of foot posture, our method is superior to open-
pose, 3D Prior ControlNet effectively controls the pose of
the human and generates high-quality human images.

Figure 4: Multi-view images generation.

Image-to-Image. In the experiment of image-to-image,
we conduct qualitative and quantitative analysis. Similarly,
under the same prompt, the 4th and 13th participants are
selected for the experiment. See Figure 3, through qualita-

tive comparison, it is found that the results of our method
are optimal. Specifically, it significantly surpasses depth in
dress, and is significantly better than openpose in foot and
hand pose control, with more detailed features. Quantita-
tive results are presented in Table 1, Frechet Inception Dis-
tance (FID), Root Mean Squared Error (RMSE), Peak Sig-
nal Noise Ratio (PSNR) and Structural Similarity Index
(SSIM) are used for comparison. Our method achieves the
best RMSE and PSNR values, and the dress and human im-
age are closer to the original image. On other metrics, our
method is comparable to the advanced opnepose and com-
petitive in posture adjustment accuracy and consistency.

FID ↓ RMSE↓ PSNR↑ SSIM↑
Depth 150.64 47.22 14.85 0.94
Openpose 123.95 42.66 15.74 0.96
Openpose+Depth 127.51 44.60 15.39 0.95
Ours 125.77 41.16 16.04 0.96

Table 1: Quantitative comparison.

For the generation of multi-view human images, it is
necessary to obtain pose control images at different angles
(−45◦, 0◦, 45◦) by adjusting different camera parameters. In
addition, the 35th participant data in HBW is also added for
the experiment. As shown in Figure 4, our method can effec-
tively maintain the consistency of pose on different views,
and achieve a unified effect on clothing.

Conclusion
In this paper, SMPL is introduced as a 3D prior to explic-
itly control the human body poses, increasing the stability
and fidelity of human generation. We use Stable Diffusion as
the basic framework for human image generation, and train
LoRA to control character style, then use 3D prior to train
ControlNet for desired human poses. As shown in the ex-
periments, our method is able to maintain the consistency
in both the appearance and pose of particular characters.
To sum up, we propose a novel method for the generation
of human images, which has wide applications in media, e-
commerce and video production.
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